A pr 1 99 8 Brownian Sheet Images and Bessel – Riesz Capacity

نویسنده

  • Davar Khoshnevisan
چکیده

We show that the image of a 2–dimensional set under d–dimensional, 2– parameter Brownian sheet can have positive Lebesgue measure if and only if the set in question has positive (d/2)–dimensional Bessel–Riesz capacity. Our methods solve a problem of J.-P. Kahane. Consider two independent d–dimensional Brownian motions X X(t) ; t 0 and Y Y (t) ; t 0. Let E 1 and E 2 denote two disjoint compact subsets of [0, ∞[. where Leb d denotes d–dimensional Lebesgue measure. Define additive Brownian motion Z Z(s, t) ; s, t 0 by, Z(s, t) X(s) + Y (t). Consequently, self–intersection problems for a single Brownian motion naturally translate themselves to problems about the Cartesian product E 1 × E 2 and its image under the (2,d)–random field Z; we follow [1] for notation on (N, d) fields. The goal of this paper is to provide an analytical condition on E 1 × E 2 which is equivalent to (1.1). This solves a problem of J.-P. Kahane. We will actually be concerned with a more intricate problem involving the Brownian sheet. The aforementioned problem is a simple consequence of the methods employed in this paper. To explain our results, we begin with notation and definitions which we will use throughout the paper. Any s ∈ R k is written coordinatewise as s = (s (1) , · · · , s (k)). We will use the sup norm. That is, for all integers k and all x ∈ R k , |x| max 1 i k |x (i) |. Typographically, we shall single out the special case when s ∈ [0, ∞[ 2. In this case, we write s, |s|, etc. for s, |s|, etc.; s will denote 2–dimensional time and we wish to emphasize its temporal nature by emboldening it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brownian Sheet Images and Bessel–riesz Capacity

We show that the image of a 2–dimensional set under d–dimensional, 2–parameter Brownian sheet can have positive Lebesgue measure if and only if the set in question has positive (d/2)–dimensional Bessel–Riesz capacity. Our methods solve a problem of J.-P. Kahane.

متن کامل

Transactions of Theamerican Mathematical

We show that the image of a 2{dimensional set under d{dimensional, 2{ parameter Brownian sheet can have positive Lebesgue measure if and only if the set in question has positive (d=2){dimensional Bessel{Riesz capacity. Our methods solve a problem of J.-P. Kahane.

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Generalized Bessel and Riesz Potentials on Metric Measure Spaces

There is a rich literature on the study of Bessel and Riesz potentials on the Euclidean space R, see for example the books [23, 20, 1, 16] and the references therein. However, little is known on how to extend the Bessel and Riesz potentials to metric measure spaces in a reasonable way. This issue is interesting in that it is closely related with the study of various current topics, such as the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999